
Software Architecture for GPS-enabled
Wildfire Sensorboard

David M. Doolin†, Nicholas Sitar∗ and
Steve Glaser∗

University of California, Berkeley

Civil and Environmental Engineering
University of California, Berkeley
Berkeley, CA 94720
email: doolin@ce.berkeley.edu

Abstract
Wireless sensors for conducting wildfire monitoring share many of the capabil-

ities of other environmental sensors, collecting data such as humidity, temperature
and barometric pressure. On-board GPS location finding allows rapid, remote de-
ployment. In this poster, a scheme for developing driver and interface software for
employing the Crossbow MTS420CA sensorboard is described. A high-level, gen-
eralized sensor interface is presented. Data collection algorithms implemented over
implementations of this sensor interface do not require programming changes to the
underlying sensor driver code.

1 Introduction

Monitoring rapidly changing environmental conditions occurring during
wildfire requires deployment of large numbers of sensors into danger-
ous environments. The NSF Information Technology Research sponsored
“Firebug” project (2003) is developing a small, inexpensive platform using
wireless communication networks to support a heterogeneous array of sen-
sors useful for detecting the initiation and monitoring the spread of wild-
fires. One component of the Firebug project is a environmental sensor
board with GPS location capabilities (“Fireboard”). The software architec-
ture for the fireboard is described in this poster.

1.1 Fireboard

The Fireboard, bottom and top shown in Figs. 1 and 2 respectively, is
composed of an Analog Devices ADXL202JE accelarometer, an Sensirion
SHT11 combined temperature and humidity sensor, an Intersema 5534AP
combined barometric pressure and temperature sensor a Taos 250RD light
sensor, and a LeadTek 9546 GPS unit. The driver code for the board ini-
tially combined previously written mica weatherboard code with preexist-
ing code from a GPS unit. The code, while useful for demonstration pur-
poses, required updating for TinyOS 1.1 and was written for synchronous
operation using either the GPS unit, or all the other sensors, but not both at
the same time.

Figure 1. Bottom view of Fireboard. Figure 2. Top view of Fireboard.

1.2 Sensor and sensorboard operation

Currently, sensor values are collected by implementing components pro-
viding access directly to ADC or UART. This has the advantage of being
“close to the metal”, at the expense of introducing unnecessary complexity
for application programmers.

To reduce the complexity of sensor board programming, Gay et al. (2004)
recently proposed formalizing a specification for implementing sensor
driver code as part of a sensorboard specification. This proposal, in part,
reflects current implementations of code for operating sensors on “weather
boards”, such as that deployed at Great Duck Island (Mainwaring et al.
2002). For example, controlling sensors would still require understanding
the code and mechanisms behind the operation of I2C, UART, and ADC.

Ho (2004) proposed a MATLAB-based system for sending messages to
motes pre-programmed with a “GenericSensor” application. Specifications
for the active message (AM) structure are provided, including messages for
command and control, route discovery, and data transmission. The advan-
tage of this scheme is that once the software supporting the sensor hard-
ware has been implemented, the system requires little further work on the
mote software; data collection and mote control are provided through soft-
ware written on the widely-familiar MATLAB platform. Disadvantages
include: latency induced by having centralized control over mote behav-
ior, slowing down the response of adaptive data collection algorithms and
necessity of rewriting the application to fit changes in sensor hardware.

The Gay et al. and Ho proposals could be considered as part of a “DPI”:
Developer’s Programming Interface. TheHLSensorinterface described
here could be considered part of an API; an Applications Programming
Interface constructed on the lower level modules, as shown in Fig. 3.

Applications: FireBug, etc.

Hardware Presentation Layer (HPL)

Application Programming Interfaces

 (HLSensor, TimerC, etc.)

Developer Programming Interfaces

 (ADC, I2C, UART, etc.)

Figure 3. An API stack for TinyOS applications.

1.3 Requirements and capabilities

We needed at least the following characteristics for the driver code:

• Ability to control which sensors are working at a given time.

• Separate data collection algorithm from sensor driver code. Changing
the data collection algorithm should not require any changes in the lower
level sensor driver code.

•Understandable, in principle, by participants without formal training in
electrical engineering /computer science.

The definition and implementation of theHLSensorinterfaces form a
“Programmer’s API” that resides above the TinyOS core modules, but be-
low the level of applications. Other types of applications benefit from this
kind of abstraction. For example, Lynch et al. (2003) use a microcontroller
to power both sensors and a computational unit for performing fast fourier
transform on the platform. Typically, such transforms are used to extract
a small number of lower order terms representing the dominant response.
This saves a considerable amount of network traffic since the time series is
not transmitted and low accuracy, higher order terms are ignored.

2 Module architecture

Separating a sensor board into constituent sensors has the following advan-
tages:

•Reduces complexity — divide and conquer.

• Encourages incremental implementation and testing. For example, not
every command in an interface need be implemented initially. As com-
mands are incrementally implemented, the implementation can be de-
bugged.

TinyOS and nesC use a number of naming conventions. The Sensor in-
terface follows this example:

• Each sensor located in a directory named by:
manufacturer modelnumber (Figs. 4, 5).
Example:sensirion sht11 .

• Each sensor board located in directory named by
manufacturer modelnumber .
Example:xbow mts420ca .

interfaces

sensorboards

platform

lib

sensors

tos

system

Figure 4. Structure of tos directory with

sensors directory included.

adxl_202je

sensirion_sht11

leadtek_9546

intersema_5534ap

taos_tsl25rd

sensors

Figure 5. Structure of sensors directory with

sensors used for Crossbow MTS420CA

sensor board.

The actual files making the sensor work are divided into a driver file, then
everything else:

• * driver.nc is the configuration for sensor “*”. This provides a “first line
of defense” when driver code needs to be modified, and should consist
only of nesC system code.

• Every other file in the directory supports the driver, and may consist of
a mixture of nesC system code and hardware specific code.

•CPU specific code (Atmel, TI, etc) should not be located in this direc-
tory.

Constructing unique names for sensor boards eliminates any ambiguity
about precisely which piece of hardware is being used. A unique name
reduces the potential for blunders caused by incorrect include paths, where
sensorboard.h may be included more than once, or from the wrong
location. An example of this is compiling the micawbdot into an appli-
cation, then using the fireboard, which will return data of some unknown
sort.

2.1 High-level Sensor interface

interface HLSensor {

command result_t powerOn(uint8_t power_state);
event result_t powerOnDone();
command result_t init();
command result_t powerOff();
event result_t powerOffDone();
command result_t setSamplingInterval(//

uint16_t interval);
command result_t getSamplingInterval(//

uint16_t interval);
command result_t startSampling();
command result_t stopSampling();
command result_t sampleOnce();
event result_t dataReady(void * userdata);
command result_t loadProgram(uint8_t * program);

event result_t error(uint16_t error_code);
}

TheHLSensorinterface is “heavier” than most of the interfaces defined
in the TinyOS core. Interfaces in the core are more general, designed
for flexibility. The HLSensorinterface trades some flexibility for ease-of-
programming at the application level. Interfaces in the TinyOS core could
be considered an API for library extension development, constituting a “de-
veloper’s programming interface” (DPI). In contrast, theHLSensorinter-
face provides an application’s programmer interface (API). Implementa-
tions ofHLSensorallow application programmers to experiment with dis-
tributed data collection algorithms, such as feedback-controlled adaptive
algorithms, without having to modify any driver code. One advantage of
HLSensoris that a general sensorboard component may be written that
provides multiple sensors. The sensorboard component then packages the
requisite data into a custom data structure which is then tucked into an
active message for radio transmission.

Sampling is controlled by 6 commands which reflect the expec-
tations and vocabulary of domain experts:[get,set]SamplingInterval,
[start,stop]Sampling, sampleOnce and dataReady. These commands do
exactly what the names suggest. The commands[start,stop]Sampling are
useful for continuous, asynchronous sampling where the implementation
controls the timing of the data collection. This capability is useful for
adaptive sampling. sampleOnce is useful for synchronous data collection
controlled, for example, by a sensorboard component.

The dataReady event provides a void pointer cast to a sensor-specific data
structure. This differs from the Gay et al. (2004) proposal for a lower level
sensor interface, where the dataReady event returns raw values from hard-
ware components such as the ADC. This and the Gay et al. specifications
complement each other in the sense thatHLSensormay be implemented
on top of the Gay et al. design for processing and calibrating hardware
readings on the mote to allow distibuted/autonomous control over data col-
lection.

Power, init and error Arguments to the powerOn command allow
control of sensors with multiple power states. The init command pro-
vides software initialization of a sensor component, independent of the
power[On/Off] command. The error event passes an sensor-specific error
argument, defined in the header file for each sensor.

Runtime sensor programming is performed using the loadProgram
command. All sensors are assumedlogically programmable,

• If there is hardware support for programming, loading a program causes
sensor/implementation dependent behavior.

• If there is no hardware programming support, then loading a program is
a no-op.

Note that the program could just as easily be used for controlling driver
software state controlling sensor hardware operations.

3 Summary

• Separating the Fireboard sensors into modules allowed driver code for
each sensor to be upgraded independently.

•Using an implementation of theHLSensorinterface is much easier than
modifying drivers.

• TheHLSensorinterface is not a panacea, but given there is no “one size
fits all” the current implementation works well.

• In light of recently proposed sensor abstractions (Gay et al. 2004; Ho
2004), more work needs to be done to define the interaction between the
TinyOS core and higher levels interfaces such asHLSensor.

References

Chen, M. M., C. Majidi, D. M. Doolin, S. Glaser, and N. Sitar (2003,
June 17-18).Design and construction of a wildfire instrumentation
system using networked sensors.Poster — Network Embedded Sys-
tems Technology (NEST) Retreat, Oakland, CA.

Gay, D., P. Levis, and J. Polastre (2004).Standard TinyOS sensorboard
interface. (Unpublished) Distributed with TinyOS source, 4 Feb.,
2004.

Ho, H. (2004).Generic sensor platform for networked sensor nodes.
(Unpublished) Distributed with TinyOS source, 4 Feb., 2004.

Lynch, J. P., A. Sundararajan, K. Law, A. S. Kiremidjian, T. Kenny, and
E. Carryer (2003).Embedment of structural monitoring algorithms
in a wireless sensing unit.Structural Engineering and Mechanics 15,
285–297.

Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son (2002, September).Wireless sensor networks for habitat monitor-
ing.In Proceedings of the 1st ACM international workshop on Wire-
less sensor networks and applications, pp. 88–97. ACM Press.

†Post-doctoral researcher, Civil and Environmental Engineering, University of California, Berkeley

∗Professor, Civil and Environmental Engineering, University of California, Berkeley

